Skip to contents

In this vignette, we will use funkyheatmap to reproduce the figures by Saelens et al. (2019).

Load data

This data was generated by running the data-raw/dynbenchmark_data.R script. It fetches the latest results from the dynbenchmark_results repository and stores the data inside the funkyheatmap package.

library(funkyheatmap)
library(kableExtra)

data("dynbenchmark_data")

Process results

The results data is one big data frame.

data <- dynbenchmark_data$data
print(data[, 1:12])
#> # A tibble: 51 × 12
#>    id               method_name method_source tool_id method_platform method_url
#>    <chr>            <chr>       <chr>         <chr>   <chr>           <chr>     
#>  1 paga             PAGA        tool          paga    Python          https://g…
#>  2 raceid_stemid    RaceID / S… tool          raceid… R               https://g…
#>  3 slicer           SLICER      tool          slicer  R               https://g…
#>  4 slingshot        Slingshot   tool          slings… R               https://g…
#>  5 paga_tree        PAGA Tree   tool          paga    Python          https://g…
#>  6 projected_sling… Projected … tool          slings… R               https://g…
#>  7 mst              MST         offtheshelf   mst     R               NA        
#>  8 monocle_ica      Monocle ICA tool          monocle R               https://g…
#>  9 monocle_ddrtree  Monocle DD… tool          monocle R               https://g…
#> 10 pcreode          pCreode     tool          pcreode Python          https://g…
#> # ℹ 41 more rows
#> # ℹ 6 more variables: method_license <chr>, method_authors <list>,
#> #   method_description <chr>, wrapper_input_required <list>,
#> #   wrapper_input_optional <list>, wrapper_type <chr>

Choose a few columns to preview.

preview_cols <- c(
  "id",
  "method_source",
  "method_platform",
  "benchmark_overall_norm_correlation",
  "benchmark_overall_norm_featureimp_wcor",
  "benchmark_overall_norm_F1_branches",
  "benchmark_overall_norm_him",
  "benchmark_overall_overall"
)
kable(data[, preview_cols])
id method_source method_platform benchmark_overall_norm_correlation benchmark_overall_norm_featureimp_wcor benchmark_overall_norm_F1_branches benchmark_overall_norm_him benchmark_overall_overall
paga tool Python 0.6504941 0.7303490 0.6087144 0.5974547 0.6447229
raceid_stemid tool R 0.5393572 0.6255247 0.2683444 0.4539247 0.4502455
slicer tool R 0.1387779 0.1695031 0.2475509 0.5536164 0.2382829
slingshot tool R 0.7401781 0.7243311 0.6909130 0.6533370 0.7013883
paga_tree tool Python 0.6880083 0.7364518 0.6716161 0.6665846 0.6901263
projected_slingshot tool R 0.6551315 0.6788597 0.6828560 0.6357031 0.6628618
mst offtheshelf R 0.6098712 0.6640261 0.5768291 0.6288011 0.6190788
monocle_ica tool R 0.6290279 0.6657493 0.5967264 0.6048960 0.6235326
monocle_ddrtree tool R 0.7310423 0.7312963 0.4523655 0.6616356 0.6324644
pcreode tool Python 0.6462532 0.7170194 0.4573191 0.5739903 0.5905605
celltree_vem tool R 0.3680771 0.4788885 0.6841745 0.5753976 0.5132477
scuba tool Python 0.5446324 0.5305276 0.5814803 0.5435960 0.5497379
celltree_maptpx tool R 0.6111870 0.6242291 0.6331532 0.5258015 0.5969833
slice tool R 0.6222513 0.5796429 0.5970229 0.5240740 0.5795988
sincell tool R 0.5377153 0.5503793 0.3327244 0.5634739 0.4853368
cellrouter tool R 0.3137068 0.4423247 0.2750984 0.4864977 0.3691548
elpigraph tool R 0.5733797 0.6327042 0.2200817 0.4345891 0.4315950
urd tool R 0.3093083 0.4060632 0.3231054 0.4129312 0.3597923
celltrails tool R 0.5020187 0.5126936 0.4591280 0.3359874 0.4463840
mpath tool R 0.3368190 0.5333464 0.4657864 0.5742558 0.4681926
merlot tool R 0.2249512 0.2075988 0.2426236 0.2494673 0.2305765
celltree_gibbs tool R 0.2055744 0.1753163 0.1799559 0.1460367 0.1754304
calista tool R 0.1758370 0.1321052 0.1502081 0.1560643 0.1527590
stemnet tool R 0.6105113 0.5097026 0.6560640 0.6685405 0.6078146
fateid tool R 0.6740480 0.7005336 0.6375255 0.6135320 0.6555618
mfa tool R 0.4972208 0.4796343 0.6151766 0.5765243 0.5392861
grandprix tool Python 0.2988668 0.2862216 0.3377857 0.3828958 0.3243213
gpfates tool Python 0.2623099 0.2943448 0.3925739 0.4088326 0.3336449
scoup tool C++ 0.1475558 0.1078882 0.1263542 0.1006899 0.1192962
projected_dpt tool R 0.4568055 0.4998640 0.5137955 0.6109238 0.5174163
wishbone tool Python 0.5277212 0.5275330 0.4659129 0.5385160 0.5140903
dpt tool R 0.4743485 0.4589767 0.4894898 0.5367237 0.4890414
scorpius tool R 0.7816934 0.6585905 0.6858362 0.5785150 0.6722747
comp1 offtheshelf R 0.6274595 0.5385159 0.6846520 0.5770320 0.6044544
matcher tool Python 0.6068638 0.5537249 0.6353805 0.5293056 0.5798043
embeddr tool R 0.7075335 0.5804200 0.6421205 0.5317872 0.6119430
tscan tool R 0.5967668 0.7057806 0.6593750 0.5785164 0.6331121
wanderlust tool Python 0.5551993 0.5072468 0.5789748 0.4763553 0.5279159
phenopath tool R 0.5828424 0.4716004 0.6565155 0.5501488 0.5613227
waterfall tool R 0.6628271 0.5681419 0.6777215 0.5700908 0.6176083
elpilinear tool R 0.5498927 0.5413164 0.6524324 0.5498067 0.5716348
topslam tool Python 0.5612422 0.5206949 0.6154048 0.5090714 0.5500704
forks tool Python 0.2940185 0.3239275 0.3286755 0.3519913 0.3239891
ouijaflow tool Python 0.4242776 0.4021585 0.4824233 0.3971562 0.4252157
pseudogp tool R 0.2310569 0.2186398 0.2598661 0.1996926 0.2262768
ouija tool R 0.1262870 0.0932476 0.0984331 0.0750823 0.0965870
scimitar tool Python 0.1262870 0.0932476 0.0984331 0.0750823 0.0965870
angle offtheshelf R 0.7267030 0.7267977 0.6858362 0.4363454 0.6305294
elpicycle tool R 0.5484363 0.6016047 0.6524324 0.4188026 0.5479559
oscope tool R NA NA NA NA NA
recat tool R 0.4613065 0.5007224 0.4893212 0.3113828 0.4331305

It’s possible to use funky_heatmap() to visualise the data frame without providing additional metadata, but it will likely not have any of the desired formatting.

g <- funky_heatmap(data[, preview_cols])
#>  No column info was provided, assuming all columns in `data` are to be plotted.
#>  Column info did not contain column `name`, using `id` to generate it.
#>  Column info did not contain information on which columns to plot, inferring from `data` types.
#>  Column info did not contain group information, assuming columns are ungrouped.
#>  Column info did not contain a column called 'palette', generating palettes based on the 'geom' column.
#>  Column info did not contain a column called 'width', generating options based on the 'geom' column.
#>  Column info did not contain a column called 'legend', generating options based on the 'geom' column.
#>  No row info was provided, assuming all rows in `data` are to be plotted.
#>  Row info did not contain group information, assuming rows are ungrouped.
#>  No palettes were provided, trying to automatically assign palettes.
#>  Palette named 'numerical_palette' was not defined. Assuming palette is numerical. Automatically selected palette 'Blues'.
#>  No legends were provided, trying to automatically infer legends.
#>  Some palettes were not used in the column info, adding legends for them.
#>  Legend 1 did not contain a geom, inferring from the column info.
#>  Legend 1 did not contain labels, inferring from the geom.
#>  Legend 1 did not contain size, inferring from the labels.
#>  Legend 1 did not contain color, inferring from the palette.
g

Process column info

Apart from the results themselves, the most important additional info is the column info. This data frame contains information on how each column should be formatted.

column_info <- dynbenchmark_data$column_info
kable(column_info)
group id name geom palette options
method_characteristic method_name text NA 0, 6
method_characteristic method_priors_required_str Priors required text NA 2
method_characteristic method_wrapper_type Wrapper type text NA 2
method_characteristic method_platform Platform text NA 2
method_characteristic method_topology_inference Topology inference text NA 2
score_overall summary_overall_overall Overall bar overall 4, 0
score_overall benchmark_overall_overall Accuracy bar benchmark 4, 0
score_overall scaling_pred_overall_overall Scalability bar scaling 4, 0
score_overall stability_overall_overall Stability bar stability 4, 0
score_overall qc_overall_overall Usability bar qc 4, 0
score_overall control_label text NA TRUE
benchmark_metric benchmark_overall_norm_him Topology funkyrect benchmark NULL
benchmark_metric benchmark_overall_norm_F1_branches Branch assignment funkyrect benchmark NULL
benchmark_metric benchmark_overall_norm_correlation Cell positions funkyrect benchmark NULL
benchmark_metric benchmark_overall_norm_featureimp_wcor Features funkyrect benchmark NULL
benchmark_source benchmark_source_real_gold Gold funkyrect benchmark NULL
benchmark_source benchmark_source_real_silver Silver funkyrect benchmark NULL
benchmark_source benchmark_source_synthetic_dyngen dyngen funkyrect benchmark NULL
benchmark_source benchmark_source_synthetic_dyntoy dyntoy funkyrect benchmark NULL
benchmark_source benchmark_source_synthetic_prosstt PROSSTT funkyrect benchmark NULL
benchmark_source benchmark_source_synthetic_splatter Splatter funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_cycle Cycle funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_linear Linear funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_bifurcation Bifurcation funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_convergence Convergence funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_multifurcation Multifurcation funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_tree Tree funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_acyclic_graph Acyclic funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_graph Connected funkyrect benchmark NULL
benchmark_trajtype benchmark_tt_disconnected_graph Disconnected funkyrect benchmark NULL
benchmark_execution benchmark_overall_pct_errored_str % Errored text NA 1
benchmark_execution benchmark_overall_error_reasons Reason pie error_reasons NULL
scaling_predtime scaling_pred_scoretime_cells1m_features100 1m × 100 rect scaling FALSE
scaling_predtime scaling_pred_scoretime_cells1m_features100 text white6black4 scaling_pred_timestr_cells1m_features100, TRUE , 3 , FALSE
scaling_predtime scaling_pred_scoretime_cells100k_features1k 100k × 1k rect scaling FALSE
scaling_predtime scaling_pred_scoretime_cells100k_features1k text white6black4 scaling_pred_timestr_cells100k_features1k, TRUE , 3 , FALSE
scaling_predtime scaling_pred_scoretime_cells10k_features10k 10k × 10k rect scaling FALSE
scaling_predtime scaling_pred_scoretime_cells10k_features10k text white6black4 scaling_pred_timestr_cells10k_features10k, TRUE , 3 , FALSE
scaling_predtime scaling_pred_scoretime_cells1k_features100k 1k × 100k rect scaling FALSE
scaling_predtime scaling_pred_scoretime_cells1k_features100k text white6black4 scaling_pred_timestr_cells1k_features100k, TRUE , 3 , FALSE
scaling_predtime scaling_pred_scoretime_cells100_features1m 100 × 1m rect scaling FALSE
scaling_predtime scaling_pred_scoretime_cells100_features1m text white6black4 scaling_pred_timestr_cells100_features1m, TRUE , 3 , FALSE
scaling_predtime benchmark_overall_time_predcor_str Cor. pred. vs. real text NA 3
scaling_predmem scaling_pred_scoremem_cells1m_features100 1m × 100 rect scaling FALSE
scaling_predmem scaling_pred_scoremem_cells1m_features100 text white6black4 scaling_pred_memstr_cells1m_features100, TRUE , 2 , FALSE
scaling_predmem scaling_pred_scoremem_cells100k_features1k 100k × 1k rect scaling FALSE
scaling_predmem scaling_pred_scoremem_cells100k_features1k text white6black4 scaling_pred_memstr_cells100k_features1k, TRUE , 2 , FALSE
scaling_predmem scaling_pred_scoremem_cells10k_features10k 10k × 10k rect scaling FALSE
scaling_predmem scaling_pred_scoremem_cells10k_features10k text white6black4 scaling_pred_memstr_cells10k_features10k, TRUE , 2 , FALSE
scaling_predmem scaling_pred_scoremem_cells1k_features100k 1k × 100k rect scaling FALSE
scaling_predmem scaling_pred_scoremem_cells1k_features100k text white6black4 scaling_pred_memstr_cells1k_features100k, TRUE , 2 , FALSE
scaling_predmem scaling_pred_scoremem_cells100_features1m 100 × 1m rect scaling FALSE
scaling_predmem scaling_pred_scoremem_cells100_features1m text white6black4 scaling_pred_memstr_cells100_features1m, TRUE , 2 , FALSE
scaling_predmem benchmark_overall_mem_predcor_str Cor. pred. vs. real text NA 3
stability stability_him Topology funkyrect stability NULL
stability stability_F1_branches Branch assignment funkyrect stability NULL
stability stability_correlation Cell positions funkyrect stability NULL
stability stability_featureimp_wcor Features funkyrect stability NULL
qc_category qc_cat_availability Availability funkyrect qc NULL
qc_category qc_cat_behaviour Behaviour funkyrect qc NULL
qc_category qc_cat_code_assurance Code assurance funkyrect qc NULL
qc_category qc_cat_code_quality Code quality funkyrect qc NULL
qc_category qc_cat_documentation Documentation funkyrect qc NULL
qc_category qc_cat_paper Paper funkyrect qc NULL
qc_category control_label text NA 1, -6

With just the data and the column info, we can already get a pretty good funky heatmap:

g <- funky_heatmap(data, column_info = column_info)
#>  No row info was provided, assuming all rows in `data` are to be plotted.
#>  Row info did not contain group information, assuming rows are ungrouped.
#>  No column groups was provided, deriving from column info.
#>  Column groups did not contain a column called 'palette'. Assuming no colour scales need to be used.
#>  Column groups did not contain a column called 'level1'. Using `column_info$group` as a makeshift column group name.
#>  No palettes were provided, trying to automatically assign palettes.
#>  Palette named 'overall' was not defined. Assuming palette is numerical. Automatically selected palette 'Blues'.
#>  Palette named 'benchmark' was not defined. Assuming palette is numerical. Automatically selected palette 'Reds'.
#>  Palette named 'scaling' was not defined. Assuming palette is numerical. Automatically selected palette 'YlOrBr'.
#>  Palette named 'stability' was not defined. Assuming palette is numerical. Automatically selected palette 'Greens'.
#>  Palette named 'qc' was not defined. Assuming palette is numerical. Automatically selected palette 'Greys'.
#>  Palette named 'error_reasons' was not defined. Assuming palette is categorical. Automatically selected palette 'Set3'.
#>  Palette named 'white6black4' was not defined. Assuming palette is numerical. Automatically selected palette 'Grays'.
#>  No legends were provided, trying to automatically infer legends.
#>  Some palettes were not used in the column info, adding legends for them.
#>  Legend 1 did not contain a geom, inferring from the column info.
#> ! Legend 1 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 2 did not contain a geom, inferring from the column info.
#> ! Legend 2 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 3 did not contain a geom, inferring from the column info.
#> ! Legend 3 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 4 did not contain a geom, inferring from the column info.
#> ! Legend 4 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 5 did not contain a geom, inferring from the column info.
#> ! Legend 5 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 6 did not contain a geom, inferring from the column info.
#>  Legend 6 did not contain labels, inferring from the geom.
#>  Legend 6 did not contain color, inferring from the palette.
#>  Legend 7 did not contain a geom, inferring from the column info.
#>  Legend 7 did not contain labels, inferring from the geom.
#> ! Legend 7 has geom 'text' but no specified labels, so disabling this legend for now.
g
#> Warning: Removed 17 rows containing missing values or values outside the scale range
#> (`geom_rect()`).

Finetuning the visualisation

The figure can be finetuned by grouping the columns and rows and specifying custom palettes.

Column grouping:

column_groups <- dynbenchmark_data$column_groups
kable(column_groups)
Experiment Category group palette
Method method_characteristic overall
Summary Aggregated scores per experiment score_overall overall
Accuracy Per metric benchmark_metric benchmark
Accuracy Per dataset source benchmark_source benchmark
Accuracy Per trajectory type benchmark_trajtype benchmark
Accuracy Errors benchmark_execution benchmark
Scalability Predicted time
(#cells × #features) scaling_predtime scaling
Scalability Predicted memory
(#cells × #features) scaling_predmem scaling
Stability Similarity
between runs stability stability
Usability Quality of
software and paper qc_category qc

Row info:

row_info <- dynbenchmark_data$row_info
kable(row_info)
group id
graph paga
graph raceid_stemid
graph slicer
tree slingshot
tree paga_tree
tree projected_slingshot
tree mst
tree monocle_ica
tree monocle_ddrtree
tree pcreode
tree celltree_vem
tree scuba
tree celltree_maptpx
tree slice
tree sincell
tree cellrouter
tree elpigraph
tree urd
tree celltrails
tree mpath
tree merlot
tree celltree_gibbs
tree calista
multifurcation stemnet
multifurcation fateid
multifurcation mfa
multifurcation grandprix
multifurcation gpfates
multifurcation scoup
bifurcation projected_dpt
bifurcation wishbone
bifurcation dpt
linear scorpius
linear comp1
linear matcher
linear embeddr
linear tscan
linear wanderlust
linear phenopath
linear waterfall
linear elpilinear
linear topslam
linear forks
linear ouijaflow
linear pseudogp
linear ouija
linear scimitar
cycle angle
cycle elpicycle
cycle oscope
cycle recat

Row grouping:

row_groups <- dynbenchmark_data$row_groups
kable(row_groups)
group Group
graph Graph methods
tree Tree methods
multifurcation Multifurcation methods
bifurcation Bifurcation methods
linear Linear methods
cycle Cyclic methods

Palettes:

palettes <- dynbenchmark_data$palettes
print(palettes)
#> # A tibble: 7 × 2
#>   palette       colours    
#>   <chr>         <list>     
#> 1 overall       <chr [101]>
#> 2 benchmark     <chr [101]>
#> 3 scaling       <chr [101]>
#> 4 stability     <chr [101]>
#> 5 qc            <chr [101]>
#> 6 error_reasons <chr [4]>  
#> 7 white6black4  <chr [10]>

Generate funky heatmap

The resulting visualisation contains all of the results by Saelens et al. (2019) in a single plot.

Note that Figures 2 and 3 from the main paper and Supplementary Figure 2 were generated by making different subsets of the column_info and column_groups objects.

g <- funky_heatmap(
  data = data,
  column_info = column_info,
  column_groups = column_groups,
  row_info = row_info,
  row_groups = row_groups,
  palettes = palettes,
  col_annot_offset = 3.2
)
#>  No legends were provided, trying to automatically infer legends.
#>  Some palettes were not used in the column info, adding legends for them.
#>  Legend 1 did not contain a geom, inferring from the column info.
#> ! Legend 1 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 2 did not contain a geom, inferring from the column info.
#> ! Legend 2 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 3 did not contain a geom, inferring from the column info.
#> ! Legend 3 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 4 did not contain a geom, inferring from the column info.
#> ! Legend 4 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 5 did not contain a geom, inferring from the column info.
#> ! Legend 5 has geom 'bar', which is not yet implemented. Disabling for now.
#>  Legend 6 did not contain a geom, inferring from the column info.
#>  Legend 6 did not contain labels, inferring from the geom.
#>  Legend 6 did not contain color, inferring from the palette.
#>  Legend 7 did not contain a geom, inferring from the column info.
#>  Legend 7 did not contain labels, inferring from the geom.
#> ! Legend 7 has geom 'text' but no specified labels, so disabling this legend for now.
#> Warning in funky_heatmap(data = data, column_info = column_info, column_groups
#> = column_groups, : Argument `col_annot_offset` is deprecated. Use
#> `position_arguments(col_annot_offset = ...)` instead.
g
#> Warning: Removed 17 rows containing missing values or values outside the scale range
#> (`geom_rect()`).

funkyheatmap automatically recommends a width and height for the generated plot. To save your plot, run:

ggsave("path_to_plot.pdf", g, device = cairo_pdf, width = g$width, height = g$height)

References

Saelens, Wouter, Robrecht Cannoodt, Helena Todorov, and Yvan Saeys. 2019. “A Comparison of Single-Cell Trajectory Inference Methods.” Nature Biotechnology, April. https://doi.org/10.1038/s41587-019-0071-9.